

Work Package 1 - Battery supply & deactivation

Task 1.1 - Specification of the feedstocks & inputs received from Gigafactory (scraps) and EoL modules and cells

Due date of deliverable: December 2022

Actual submission date: 28 February 2023

Project Acronym	RESPECT
Call	HORIZON-CL5-2021-D2-01
Grant Agreement N°	101069865
Project Start Date	01-07-2022
Project End Date	30-06-2026
Duration	48 months

INFORMATION

Written By Emma DE LOPPINOT (ORANO)		2023-02-21
	Bénédicte SIMON (ORANO)	
Checked by Philippe CAPRON (ORANO)		2023-02-23
Reviewed by Benjamin P. Wilson (AALTO)		2023-02-27
Approved by	Philippe CAPRON (ORANO)	2023-02-28
	Justo GARCIA(ORANO)	
Status	Final version	2023-02-28

DISSEMINATION LEVEL

CO	Confidential	Х
CL	Classified	
PU	Public	

VERSIONS

Date	Version	Author	Comment
2023-02- 23	1.0	Emma DE LOPPINOT Philippe CAPRON	The first draft
2023-02- 27	2.0	Benjamin WILSON	Updated version
2023-02- 28	FINAL	Philippe CAPRON	Final and submitted ver- sion

ACKNOWLEDGEMENT

RESPECT is a EU-funded project that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 101069865.

DISCLAIMER

The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Union. The European Commission is not responsible for any use that may be made of the information contained therein.

While this publication has been prepared with care, the authors and their employers provide no warranty with regards to the content and shall not be liable for any direct, incidental or consequential damages that may result from the use of the information or the data contained therein.

CONTENT

1	1 EXECUTIVE SUMMARY	5
2	2 MATERIAL DEFINITION AND SPECIFICATION	6
	 2.1 MODULES 2.1.1 Definition: Battery Cell, Module or Pack. What's the difference?	6 7
3	3 MATERIAL AVAILABLE ON THE MARKET	9
	 3.1 EOL MODULES EXPECTED FOR RECYCLING	
4	4 MATERIAL SHARING FOR RESPECT PROJECT	1
	 4.1 STARTING MATERIAL DISTRIBUTION	
5	5 ANNEX	1
6		
7 8		

1 EXECUTIVE SUMMARY

D1.1 grant agreement description: The deliverable will catalogue the main Li-ion battery types and cells/modules or production scrap and will provide the main data like the type of cells, the range of state of health and charge, the electrical architecture, the chemistry, the dimension of module and arrangement of the cells and the weight.

This catalogue of feedstock provides a comprehensive list of the materials that can be used by all RESPECT project participants as input for the recycling process. It can serve as a reference to easily identify the different type of waste that can be recovered and optimize recycling methods.

This catalogue is structured in three parts:

- 1) Specification of materials for lithium-ion battery recyclers: Key specifications include physical dimensions, weight, chemistry, electrical performance, the range of state of health and charge, quality, suppliers etc. These specifications provide a standardized set of guidelines for the utilized recycling methods. It enables the comparison of different products and allows for informed decisions about which modules are best suited for the recycling process and which modules will require some methodological adaptations. The objective is to be able to efficiently treat the widest of variety of modules with the same approach. In addition, a similar approach for the most efficient treatment of scraps are also considered. It should be noted that the exact chemical composition of such storage components are difficult to identify due to industrial confidentiality. Moreover, as improvements are regularly made to batteries to increase their performance, therefore the chemical composition of batteries steadily changes over time. Nevertheless, currently the main materials involved in the manufacture of lithiumion batteries are lithium, cobalt, nickel, manganese, and graphite all of which have been identified as materials with availability and environmental risks.
- 2) *Future market intelligence*: An overview of the market to comprehend the scale of quantities that recyclers will have to process.
- 3) *Materials treated via RESPECT project*: This comprises a summary of the material needs. It includes information on the type of materials, their sources, when they should be delivered, to which partners, in which quantity and the treatment applied on it.

2 MATERIAL DEFINITION AND SPECIFICATION

2.1 Modules

2.1.1 Definition: Battery Cell, Module or Pack. What's the difference?

The component constituents that make up the battery power source in an EV can be split into three distinct parts: **Cell, Module** and **Pack**. Of these, the production of battery cells can be considered to a largely chemical-based process that provides the essential elements for the next stages i.e., the mechanical assembly of the battery modules and packs, which make up the superstructure of an EV's "electric engine". In simplistic terms, cell batteries act as a repository of reversible chemical reactions that can store electrical energy and which can be charged or discharged depending on the requirements. Generally, battery cells are available in a host of different configurations depending on the chemistry and intended application, although those used in the EV sector typically comprise of three main types: *cylindrical, pouch* and *prismatic*. To harness the power of cells collectively and facilitate subsequent vehicle assembly, battery cells are connected – either in parallel or series - to form modules with predetermined voltage and energy capacity requirements. These modules are finally enclosed together along with some form of temperature control, sensors, and other battery management system (BMS) electronics in a suitable configuration to form the power source for the desired EV application like car, van, or bus [1]

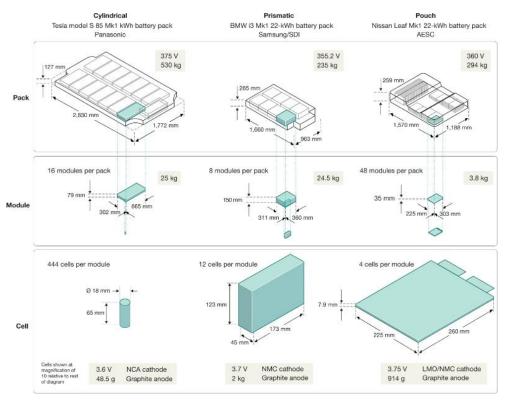


Figure 1 : Examples of three different battery packs and modules (cylindrical, prismatic and pouch cells) in use in current electric cars [2]

The three designs – outlined in Figure 1 - examined are from model year 2014; this is based on the availability of information from vehicle dismantling, and also as older model vehicles are the most likely to be closer to end-of-life (EoL) than new cars just entering the market.

2.1.2 Battery feedstock specifications

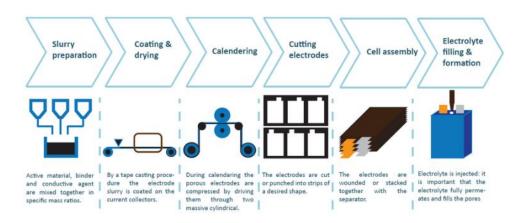
We gathered data on 30 different modules [3] put on the market in the last few years and that could be available for recycling in the period 2025-2030. We have carried out a detailed analysis for each modules' key characteristics based on the mean, standard deviation, maximum and minimum of different categories. As the batteries are not standardized, the variability of module specification could be very large, this catalogue should be considered as an initial draft based on existing technology. **N.B.** In this case, Tesla battery modules have been excluded from this assessment as the number of cylindrical cells are very high (up to 500 cells per module). [4] [5] [6] [7] [8] [9] [10] [11]

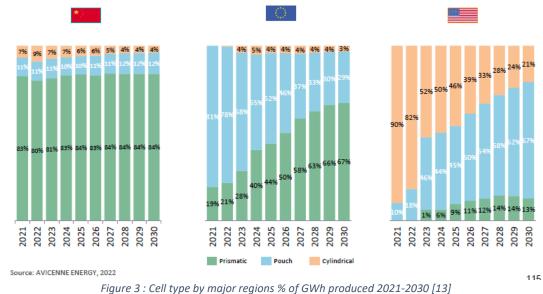
	Nominal Energy (Wh)	Capa- city (Ah)	Tension (V)	Weight (Kg)	Width(cm)	Height(cm)	Length(cm)	Num- ber of cells
Mean	5152	161.5	31.2	30.6	22.6	13.4	51.6	16.9
Stan- dard va- riation	3902	72.3	18.0	24.1	10.1	5.3	20.4	10.9
Max	12597	326.0	77.3	76.6	44.5	22.4	91.6	56.0
Min	861	62.0	7.6	3.8	8.2	3.0	30.0	2.0

Table 1 : Overview of the key characteristic from a sample of modules currently available on the market

2.2 Scraps definition

During the battery manufacturing process, several types of scraps of production are generated corresponding to the different stages (Figure 2) and are detailed in the table below (Table 2).




Figure 2 : Manufacturing steps of Li-ion batteries [12]

Main type of scrap	Description	Cell manufacturing process
Cathode ink/powder	NMC suspension or powder for cath- ode production	Electrode manufacturing
Aluminium foil	Aluminum foil before NMC coating	Electrode manufacturing
Copper foil	Copper foil before coating	Electrode manufacturing
Cathode electrode	NMC coated aluminum foil	Electrode manufacturing
Anode ink/powder	Graphite suspension or powder for anode production	Electrode manufacturing
Anode elecxtrode	Graphite coated copper foil	Electrode manufacturing
Dry stack	Stacked electrodes with separators in between	Cell assembly
Dry cells	Battery cells with stacked electrodes, separators, and casing before elec- trolyte filling	Cell assembly
Wet cells	Complete battery cells including electrolytes before charging step	Cell assembly
Charged cells	Complete battery cells after charging (that have failed validation process)	Validation

Table 2 : Main type of scrap materials generated during the manufacturing process

3 MATERIAL AVAILABLE ON THE MARKET

- 3.1 EoL modules expected for recycling
- 3.1.1 Cell structure

According to a 2022 study led by Christophe PILLOT from Avicenne, prismatic cells provide over 80% of China's demand between 2021 and 2030. In contrast, by 2026 it is predicted that prismatic cells will overtake pouch cells in Europe, whereas pouch cells will predominate over cylindrical cells in the US market. Nevertheless, this is merely a forecast based on current trends, and therefore the data should be critically analysed as the EV market can change rapidly.

3.1.2 Chemistry

To predict the chemistry available for recycling in 2025-2030, a more in depth analysis of historic market trends during 2015-2020 is needed based on a battery life of about 10 years.

In **2015, LCO and NMC were the most common chemistries**, with a global production of approximately 148 000 tonnes. In **2021,** the **global production of active cathode materials** amounted to 1 263 000 tonnes, which **mostly NMC (46.2%)**, followed by LFP with a market share at **28.9%** and **NCA** at **11.9%** (Wood Mackenzie 2021). As can be seen from the data displayed in Table 3, nearly all chemistries – except for LCO - are predicted to show continued growth of at least 50% or more by 2030 compared with their respective 2021 production levels.

Cathode type	Unit	2015	2021	2025	2030	Production Increase (2021-2030)
NCM	kt	59	584	1 702	2 681	78%
LCO	kt	44	114	149	149	23%
LFP	kt	20	366	1 268	1 947	81%
NCA	kt	15	150	219	359	58%
LMO	kt	11	50	90	122	59%
TOTAL	kt	148	1263	3429	5257	75%

Table 3: Predicted changes in different cathode chemistries production from 2015 to 2030 [14]

A recent IDTechEx study [15] provides an alternative perspective. Currently and up until 2025, the chemistries available on a global scale for the Li-ion battery recycling market will be dominated by LCO and LFP batteries (Figure 4). This is a result of the fact that a majority of the Li-ion batteries reaching end-of-life in the next few years come from a combination of consumer electronics (which mainly use LCO batteries) and packs from electric buses in China (that are based on LFP batteries).

Nevertheless, beyond 2025 it is predicted that there will be a notable increase in the amounts of NMC batteries becoming available for recycling as a direct result of the growth in EV sales from approximately 2010 onwards. However, the IDtechex study predicts only a small share for LFP in the batteries available for recycling from 2025 onwards – with the exception of in China - which decreases thereafter. This is in contrast to the **IEA's projections** [16], **which foresee a high production of LFP**, and therefore a lot of end-of-life batteries using this technology. It may be speculated that LFP will play a role in recycling throughout the 2030's and that due to its poor recyclability in the state-of-the-art processes, it is of great importance to develop routes for non-linear economy for this battery fraction. NiMH batteries are considered as past technology in the electric vehicles (HEVs) and therefore not in the focus of future battery recycling operations.

3.1.3 Quantity

As the anticipated mass adoption of electric vehicles continues with almost exponential growth, the amount of higher energy density NMC batteries that require recycling is forecast to reach almost 7 million tonnes per year by 2040 (Figure 4).



Figure 4 : Global forecast of available batteries - by chemistry - in tonnes up to 2040

As can be seen from Figure 5, from a European perspective, the trends very much follow the Global predictions with a marked change from LCO to NMC chemistry from 2025 onwards and signifcant increase in the overall amounts available of all chemistries - from ~50,000 tonnes in 2020, 250 000 tonnes in 2030 to ~1.5 million tonnes by 2040. Nevertheless, such predictions do not necessarily take into account changes to the potential supply for recycling due to increased battery use in second-life applications or shifts in chemistries dictated by material availability as a result of future market and geo-political reasons.

CO/CL/PU

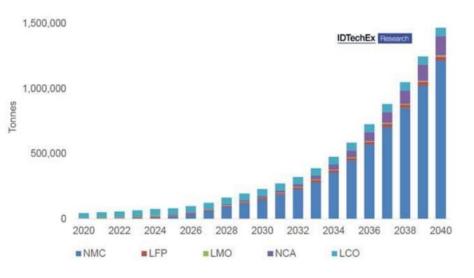


Figure 5 : Forecasted level of Li batteries for recycling in Europe 2040

End Of Life 174 KT in 2021 - 1830 kT in 2030

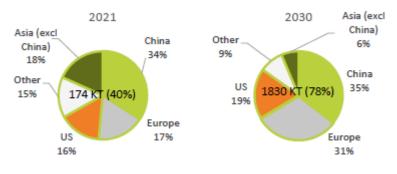


Figure 6 : Forecasted level of End of Life for recycling globally by 2030 [13]

The study carried out by Avicenne differs from IDTechex. Europe would have to treat about **30,000** tons of end-of-life batteries in its recycling sector in 2021. In 2030, it would have to treat 567,000 tons of end-of-life batteries.

3.2 Manufacturing scrap expected for recycling in 2030

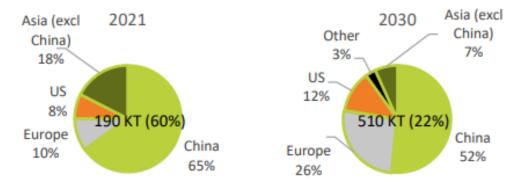
3.2.1 Type

Type of Scrap	%
Cathode electrode	10 - 20
Anode electrode	10 - 20
Electrode stack	10 - 20
Dry cell	20 - 30
Wet cell with electrolyte	20 - 25
Activated wet cell	10 - 20

Table 4 : Proportion of forecasted scrap in 2030

The type of scrap that will be mostly available on the market relates to almost finished cells without electrolyte and before load cycles (Table 4). This has the benefit of assisting recycling logistics in term

CO/CL/PU


of handling and transport as these types of materials will be consider as a non-hazardous waste. As outlined previously, the presence of electrolyte is a critical barrier to the facile recycling of these scraps due to the related chemical hazard and transport regulations.

3.2.2 Chemistry

Current and future market situation helps us to understand which technologies we should target to the recycling of battery scrap (*cf.* Table 4). Due to its high energy density, NMC, especially the latest generations, will form the majority of the different cell chemistries present in electric vehicles, closely followed by the LFP. Direct recycling could be preferred to conventional recycling route if it can be developed and if it is both economically and environmentally competitive. Furthermore, it is worth noting that hybrid technologies such as NCMA or LNMO are also in development for market application from around 2030 onward, whilst traditional chemistries like NCA will have reduced market share.

3.2.3 Quantity

Lithium-ion scraps are the discarded unusable material from manufacturing lithium-ion batteries. According to a recent study carried out by Avicenne Energy in 2022 [13], the overall level of scrap production on a European level in 2021 amounted to ~19 000 tons. However, with several new gigafactories planning to begin full scale manufacture and the increase in the need for batteries mainly related to electric mobility in Europe means there will be a significant increase in the amount of scrap by 2030. Avicenne predicts that by 2030, out of 510 000 tons of scraps destined for recycling globally, 132 600 tons will be produced and available in Europe.

Scrap: 190 KT in 2021 - 510 KT in 2030

Figure 7: Forecasted level of scraps for recycling globally by 2030 [13]

Battery scrap available for recycling in Europe in 2021, with a forecast until 2030 (in 1,000 metric tons)

Battery scrap available for recycling in Europe 2021-2030

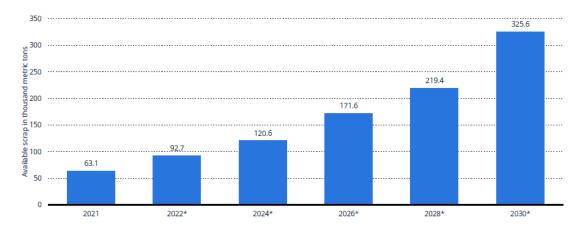


Figure 8 : Battery scrap available for recycling in Europe in 2021, with a forecast until 2030 [17]

In contrast, a recent Bloomberg report estimates the level of scrap will be significantly higher. Based on their analysis, in 2021, the number of scrap destined for recycling was 63.1KT/year. In 2030, the quantities predicted by the study would amount to nearly 325.6KT/year. It should be noted that it is still difficult to determine the level of scrap from gigafactories to be recycled by 2030, although it should represent between 20 and 30% of the total quantity of lithium-ion batteries to be recycled in the European region.

A study from Roland Berger 2022 [18] estimated that the scrap amount would be around 249KT/year in 2030, which is more like the Bloomberg prediction than that by Avicenne. Nonetheless, it can be expected that with the future introduction of new equipment or cell chemistries there may be substantial scrappage rates during the testing and ramp-up phases. According to Avicenne Energy, in total, the best scrappage rate in class could reach as low as 5%, whereas during the startup phases, the same rate can exceed 20 to 30% over a very long period.

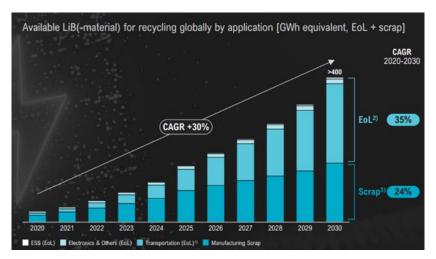


Figure 9 : Predicted total available LiB material for recycling globally by 2030 [18]

4 MATERIAL SHARING FOR RESPECT PROJECT

4.1 Starting material distribution

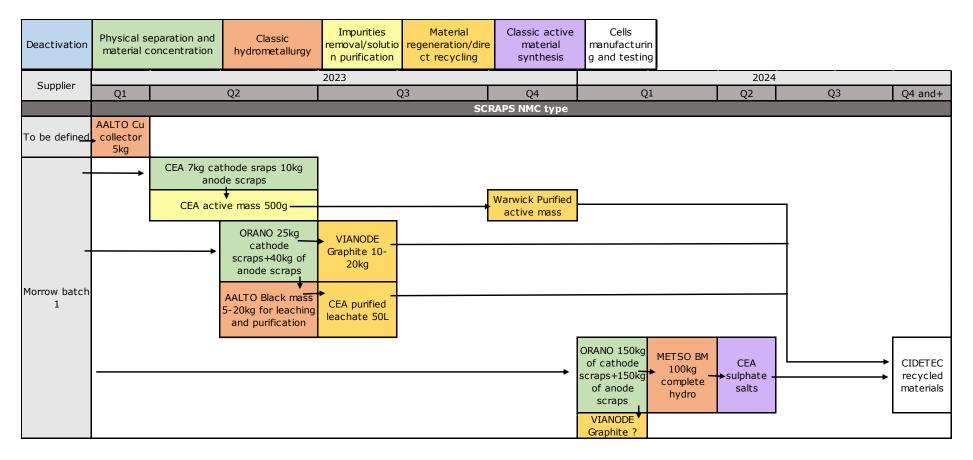
Two main materials will be provided during the realization of the RESPECT project's task. Scrap provided by Morrow from the start of its Gigafactory and End of Life (EoL) modules provided by Orano through its link to a battery supplier. As Morrow's Norwegian gigafactory will not be in production during the initial period of the RESPECT project, Morrow has decided to send the first batch of scrap from Korea - where the equipment and battery line are developed - as representative materials of genuine manufacturing scrap.

Concurrently, LFP batteries from stationary applications will be provided by Orano with 2 modules of around 30 kg being available in April. Nevertheless, it has been proposed by Orano that work carried out during 2023 will concentrate on LFP scrap rather than end-of-life modules - a point that still needs to be discussed and agreed with RESPECT partners.

Initial material	from	Quantity (kg)	expected delivery
Morrow - prismatic cells - Batch 1	Morrow	5-10 cells for CEA	June 2023
Morrow - NMC scraps - Batch 1	Morrow	 7kg of cathode scraps and 10kg of anode scraps for CEA in 2023. 25kg of cathode scraps and 40kg of anode scraps for Orano to produce enough material for all the partners at project start in 2023. 150kg of cathode scraps to be treated at the beginning of 2024 and to be sent to Metso +150kg of anode scraps 	March - April 2023
EoL Modules NMC - Batch 1	Orano/ Orano' sup- plier	10 modules including 1 for CEA to be deactivated. 500kg of modules in 2024	march - April 2023
EoL modules LFP - Batch 1	Orano's supplier	30kg (2 modules)	March - April 2023

Table 5 : Starting material sources and proposed quantities

Project		Scraps									
Treated via RESPECT	Provider	Type of scraps	Cathodic ac- tive mate- rial in wt%	Anodic ac- tive material in wt%	Electrolyte in wt%	Other ma- terials (support, binder)	UN num- bers	Chemical hazard			
YES	Morrow	Cathode foils/coils	90	Not relevant	Not relevant	10	not appli- cable (non-dan- gerous)	H330 Fatal if inhaled H350 May cause cancer by inha- lation H372 Causes dam- age to organs (Lung) through prolonged or re- peated exposure (inhala- tion). H402 Harmful to aquatic life H412 Harmful to aquatic life with long- lasting effect			
YES	Morrow	Anode coils / foils	Not relevant	70	Not relevant	30	not appli- cable (non-dan- gerous)	H351 Contains a compo- nent suspected of causing cance			
YES	Morrow	Dry cells	51	24	not relevant	25					
YES	Morrow	Wet cells	46	21	12	21	UN3480 (danger- ous goods)	Class-primary 9, Hazchem Code: 4W			
YES	Morrow	Charged cells	46	21	12	21					


Table 6 : Specification of scrap to be treated via the RESPECT project

4.2 Timeline of material distribution

For each material, a timeline for distribution has been created in order to understand the material flows, the treatment applied, and the partners involved

4.2.1 SCRAP: NMC type

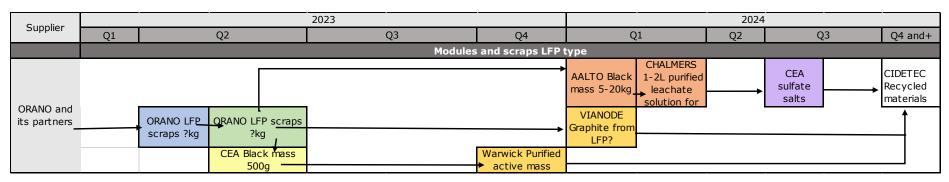
4.2.2 CELLS: NMC type

Deactivation	Physical separation and material concentration	Classic hydrometallurgy	Impurities removal/solutio n purification	Material regeneration/dire ct recycling	Classic active material synthesis	Cells manufacturin g and testing
--------------	--	----------------------------	---	---	---	--

Supplier			2023			2024		
Supplier	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4 and+
			C	Cells NMC type				
Morrow		CEA/Coup'indus 10 prismatic cells with different SoH						

CO/CL/PU

4.2.3 MODULES: NMC type


Deactivation	Physical separa material conce		Classic hydrometallurgy	Impurities removal/solutio n purification	Materia regeneratior ct recycli	n/dire	Classic active material synthesis	Cells manufactu g and test		
Supplier			2023			2024				
	Q1	Q2		Q3	Q4		Q1	Q2	Q3	Q4 and+
		ORANO sca 6kg black		Mod	ules NMC type			CIDTETEC 4kg NMC active material		
		CEA 500g of mass		t	ORANO material coarsed fraction o recover steel, plastics, Cu, Al				CEA – commercial precursor	CIDETEC baseline cathode active material
ORANO and its partners batch 1	ORANO 150 EoL NMC Modules	CRANO 150k deactivated NMC Modules	EoL		ALTO 5 to 20kg of black mass 522 for leaching and purification	CHALME 1-2L pur leacha solution selectir separat	ified te for ve	CEA Sulfates salts		
						VIANODE 20kg graf				
		_			CEA 5I washing solution for Li recovery			_	654	
				4	1EET 5I washing solution for Li recovery			le 1	CEA purified eachate 15-20L	CIDETEC Recycled materials
ORANO and its partners batch 2						ORANO 5 EoL NM module		for	CEA ulfates salts	
								VIANODE Graphite		

CO/CL/PU

4.2.4 MODULES: LFP type

Deactivation	Physical separation and material concentration	Classic hydrometallurgy	Impurities removal/solutio n purification	Material regeneration/dire ct recycling	Classic active material synthesis	Cells manufacturin g and testing
--------------	--	----------------------------	---	---	---	--

5 ANNEX

*			tari	ey park) and the second							Visita								Galipsonery				CHI.		0		Comments.
	n gr	at addri	Ronaul Linegy Th(HpA3)	v	unji N	Daminan Jin Vidifindirî ngilî	number d modeler	rieducal configuration	inge	Noned Large Wh	Capacity 26	V	d avit	***	haght	legit	cafguatee	ort	Ghoslantia	Provide of orit	Calignerativy (Promotic /Noods/Sy Taniko)	(M)	V	12	(king) (king)	Micruik mide/Cithole	ilectrige (Nambriget/claim)	Sprif inseg	
		24	27 89/h nominal (4 (maimum : 25.9 89/h) (72 /R)	303 (a) (sominal)			12 modulec Di (112 milii)	96527 (e		2180	72	ж	7	10	20,3	35	276 H	16	Grow of 2 addits paralel	16 Own	pmoch (od	а (ISWH)	375			NAC			Weights Proper 2007 - 2018 1
2		Twiay	6100Wh (d) (10544)	58 (4)	130 kg (1)		7 modules (31 mBi)	145 (#)		811	25	ų	,	43	27,3	25,3	25	3	2 cells inseries in the module	Lű Chem		105	41						Bearshi: CA15. with for zone Talay and 8 think with case tests depend on the vehicule used Some-cell are CA1, for zone Talay models of vehicos Yanube
3		Kangee	3 Wh										Б	13,8	22,8	32				LG Own						NAC			
		Madal e Niscan Jeat 2012 (g g236-2)	26 kilder (H)							3 9 53,6	112	148		23	3	30	25.39	a	d posts adds statied	ADE	psub	escruer (n) (G3 Ae)	7,4 (H)						
5		Nix saN Leaf	40 MV 5 (114,2 AN)	250	323	1188 * 264 * 154.7	di natile			856,4	234	74	ų	22	25	30,3	2925	4			psuth	M.1AB pittiwej	315	6338	3.5*7.1*28.0				
		Tecia 3: 21700							A MARTIN												Cylindric					NGA			Ph.1130
7		LCOwn - JP3								ena	28	515		44,5		63	2716	3	2 capared rese	LOD as	peads	GI JA	345	1,2					Induit U ion
		LGChem - UPB (BSD Ser/2							tiles alt	3283, 6		518		44,5	13,2	15,4	6716		2 separation	LDDwn	Pault	2,546	3.7						
5		7464.5							4	522,8	21	22,4	x	31,5		65	7816	мис	is staggered row		cylindric	31 m	3.0	0,0485		S.	Liquid		
20		Matules stationnaines (2004 Uni wenal Brack										294		21,5	щ	31	2n	л											
11		Sattery park 17	40 NW16 (114 A P)	250	300		10 medules		/ 🛷	2707, 5	15	210	13,1	20		25,2	2765	n	12 online ent to each other	DATI.	phonetic	38.1Ab (231.WH)	345	1.0	34.8 *9.75* 245	NBAC 622	Rystel	stanisten	•
12		Battery park VE								3352,9	174	14,25		E,19	12	44,05	395	в			prioratic	51 An	3.7		148 * 105 * 26	NAC		slanistan	(
13		Battery pack 17								3631,48	176	22,02		15,19	12	52,22	3945	×			priormatic	53 Ah	3.7		148 * 355 * 26	NAC		duninian	(
28		Bettery path VE							TURNE	3520	130	21,2	23,2				1913	11			prioratik	103.AN	33		360*13.0*498	47			
15		Bathery pack VE								3840	110	344	25,3				1918	u			prioratik	100 Ah	11		350*12.9*499	179			
55		Saffery pails VE								2555	100	25,55	13,5	II, 10	10,83	enges	275	м			ptomits	52 AN	3.05	0.9	M.8*6.8*25	NMC .		auntetan	
27		Battery park 17								6854,72	227	29,35	31,4	22,5	11	59	298	×			prioratic	113.45	4.35	1.8	22.06 * 10.5 * 33.36	NAC		dunistan	
28		Sattery park 17								1296,64	163	77,28	76,6	2,45	17,60	\$1,6	1726	ж			prioreatic	163.4h	345	╡	17.41 * 21.73 * 3.6	127		Suninum	
29		Battery pack VE			\square				(*************************************	10457,2	103	641	a	2,6	17,60	77	1728	2			priormatic	163.Ab	3.05	1	17.41 * 21.73 * 3.6	122		Sanistan	Tran
20		Battery pack VE								1296,60	305	ы,и	76,6	2,45	17,60	\$1,5	2918	×			priormatic	163 Ah	345		17.41 *21.73 *3.6	92		slaninian	Tran
21		Battery paik VC								10417.7	326	32,3	æ	2,45	17,40	77	2718	x			priormetic	163.Ah	345		17.61 * 21.73 * 3.4	1279		Bantrian	
22		Sattery paik VE								2195	150	34,84	11,6	11,1	33,8	25,5	345	u			prioratic	50 AN	3355		M.8*9.8*25	NB4C522		alantistan	
23		Saflery paik 12								11776	230	213	17,29				1918	×			ptonts	230.Ah	11	4140	173 *257*53	19			A construction of the second s
28		Ballery park 17								2377, 6	ma	145	10,7				3945	u			pearli					NIMC 522			
25		Battery pack VE							() (ii) ()	380,9	134	18,25	15,33	25,19	11,9	61,05	95	z			ptonatic	3	3.5	0905	148*10.5*226	NMC522			1

 Table 7 : Catalogue of modules considered [3] : 2023_02_22 Materials feedstock catalog module.xlsx

CO/CL/PU

		initial material +	from	Quantity (kg)	expected delivery	output type	Quantity -	to?
Minor with any print park of the set of	WP1 BATTERY SUPPLY AND DEACTIVATION							
Jiong utikana Jiong utikana<	1.3 Sourcing materials for the other WPs							
Jankard Konskin (M. 1996)Constraint (M. 1996)Section (M. 1996)	1.1.1 Sourcing of cells 1.3.2 Sourcing of NMC scraps			The of cathode scraps and 10kg of anode scraps for CEA in 2023. 25kg of cathode scraps and 40kg of anode scraps for Orano to produce enough material for all the partners at project start in 2023. 150kg of cathode scraps to be treated at the beginning of 2024 and to be sent to Metso			25	
Manage of a second part	1.3.3 Sourcing of EoL modules NMC	GV - EoL Modules NMC - Batch 1	Orano/ Orano'supplier (GV)		march - April 2023	EoL modules NMC	200	
Not not substratement Distring and mathema based and mathema and math		SAFT - EoL modules LFP - Batch 1			March - April 2023	EoL modules LFP	200	
	1.3 Safe opening and deactivation							Coup'indus
		Morrow - prismatic cells - batch 1		(70 to 100%)				/CEA
Displace Ope Ope< Ope Ope O							modules	/CEA
	1.3.6 Deactivation of EoL Modules NMC 1.3.7 Deactivation of EoL Modules LFP					deactivated modules NML deactivated modules LFP		
11 https://www.instantional.wom.instantio	WP2 : PRETREATMENT FOR MATERIALS CONCENTRATION							
Distribution of multish NC 0 0 000000000000000000000000000000000000	2.1 Module cutting							
Linking with short out of a probability Open of a probab	2.1.2 Testing on commercial modules 2.1.3 Validation on EoL modules NMC			?	End of January 2023 Q4 2023 / Q1 2024			X CEA
21 bits production MA StrateMemoryMemoryMagMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemoryMagMemory<	2.1.4 Cutting with Orano's conventional cutting machine 2.2 Selective separation from graphite and deactivated batteries		Orano	deactivated.	Q2 2023	extracted cathode and foils NMC		CEA
21 Bins (model without NM (model 2011) (m)	2.2.1 Testing and optimization on NMC scraps		Morrow	15kg	Q2 2023	washing solution	15kg	
Junit of an intervention of the set of a se	2.2.2 Testing on extracted electrodes NMC from task 2.1		Orano	eatment of the 150kg of sourced modules for 202	Q3-Q4 2023	black mass, graphite - NMC & washing solution		Aalto
And Mangementation Galance Market Ma	2.2.3 Testing on NMC scraps with the pilot of Orano	Morrow - NMC scraps - Batch 1	Morrow	25kg of cathode scraps and 60kg of anode scraps	?	washing solution		Aalto, T3.1
11 binding of the starting shall be direct with the bin be direct wi	2.2.4 Testing on extracted electrodes LFP from task 2.1	SAFT - EoL modules LFP - Batch 1	Orano	30kg modules	Q3 2023		5kg	CEA, Orano
Market service process on de document units of the Construct on the Construct on the South and any document of the South and any docu	2.3.1 Testing on the washing solution of 2.2 - supercritical CO2 and	GV - EoL Modules NMC - Batch 1						
Likeborg program gates after har barger genetics Git Baller after a fault sole of the last fault o	2.4 Physical separation process and valorisation : steel; plastics, A	, Cu						
	2.4.2 Recovery of some plastics after the physical separation	GV - EoL Modules NMC - Batch 1	Orano	Small samples of black mass for lab-scale testing	Q2/Q3 2023	cled plastics after chemical treatm	ent	х
11 Traing owneed lake name 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
11 Traing owneed lake name 1 </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>•</td>			1					•
13 Prior Qu'And Angel March Martin Qu'Angel March	3.1 Innovative and flexible leaching of battery waste 3.1.1 Testing on commercial black mass	?	?	Minimum 5 Kg for lab-scale testing (Max ~20kg)	end of 2023	leachate solution NMC		
13 Testing on problem stars for 32 generating with Martine Star (a local star) Use the start of start a start of start	3.1.2 Testing on NMC black mass from 2.2 NMC 622 and 811		Orano			leachate solution NMC		Metso
1.1. International solution (Ins. 11. International Institution Institution (Ins. Ins. Ins. Ins. Ins. Ins. Ins. Ins.	3.1.3 Testing on LFP black mass from 2.2 (potentially combined wi 3.1.4 Pre-production scrap copper and/or copper from separation	SAFT - EoL modules LFP - Batch 1					nbined with NMC)	
1.4 Ling include include intervent 1000 mm. 1000 000 mm. 1000 Allo Detailed analysis (with potential) 1/2 is cample partial leader backs back bits (17) Detailed analysis (with potential) 1/2 is cample partial leader backs back bits (17) Detailed analysis (with potential) 1/2 is cample partial leader backs back bits (17) Detailed analysis (with potential) 1/2 is cample partial leader backs back bits (17) Detailed analysis (with potential) 1/2 is cample partial leader backs back bits (17) Detailed analysis (with potential) 1/2 is cample Detailed analysis (with potential) 1/2 is cample partial leader backs back bits (17) Detailed analysis (with potential) 1/2 is cample Detailed analysis (with potential) 1/2 is cample <td></td> <td></td> <td>Aalto</td> <td>Detailed analysis (with potentially 1-2L sample)</td> <td></td> <td>purified leachate solution NMC (w</td> <td>(ith potentially LFP)</td> <td>Chalmers</td>			Aalto	Detailed analysis (with potentially 1-2L sample)		purified leachate solution NMC (w	(ith potentially LFP)	Chalmers
1.1 Training optified lackate from 1.2 . NVC. 00° - Edited analyzis (metallic and non-metallic determents) 15.20. 0, Ni, Mu sulfatz 000 Amginering to perform the balance state in analyzis (metallic and non-metallic determents) 15.20. 0, Ni, Mu sulfatz 000 0.00 0	3.2.1 Testing on leachate solution from 3.1 - NMC (obs. potentially 3.2.2 Testing on leachate solution from 3.1 - LFP	Morrow NMC scraps SAFT - EoL modules LFP - Batch 1						
11 Trading ongenities like states from 21 - 100C Metro Orage and particular dampets (metralic and non-metralic element) 21-20C. Cite N, Numplifies Cite A Adjustent dy basis and non 21 - 100C Orage orage and 2000 - 2000	3.3 Selective separation	GV - Fol Modules NMC - Batch 1 and						
All valation of the place what sharts of the last sharts of the la	3.3.1 Testing on purified leachate from 3.2 - NMC 3.4 Engineering hydrometallurgical process		Metso	Detailed analysis (metallic and non-metallic elements)	ments) 15-20L	Co, Ni, Mn sulfates		CEA
51 Proof decorpt and testing and on MAC string from RLM KG of MAC ranks. 1 One or CA. SSQ O2 203 purfied black mass. ADD (X 33 Proof decorpt and testing and on MAC string from RLM MG. Or Food MAGE MARK Stath 1. Orean 0 CLA. Series for regeneration (the black mass. Purf de black mass. <	3.4.1 Validation of the pilot with a batch of black mass from 2.2		Orano	100		Co, Ni, Mn sulfates	100kg	
3.1 Prod of concept and testing and nikM coming from RoLIPF AMT - Edu models for NMC - Section and section (bite defined) 23202 purified black mass. M 5.2 Sold-up and testing on the black mass produced from NCC - RoL Modules NMC - Batch 1 Orano 15. needs for regeneration (bite defined) and testing and t	3.5 pre-purification to support direct cathode regeneration 3.5.1 Proof of concept and testing and on BM coming from NMC so	Morrow - NMC scraps - Batch 1			Q2 2023	purified black mass	400g	х
5.5 Sole-up and testing on the biak muss produced from extrac OF- Ext Modules NMC - Batch 1 Orano 6 Q2 203 purfled blak muss 64g Fraueholder PM ONCCT RECYCLING AND ACTIVE MATERIAL SYNTHESIS Image: Control of high-guiling applits based on recovered gap Moreau - MAC scraps - Batch 1 Orano Image: Control of high-guiling gaphits based on recovered gap Moreau - MAC scraps - Batch 1 COntrol Image: Control of high-guiling gaphits based on recovered gap Moreau - MAC scraps - Batch 1 COntrol Image: Control of high-guiling gaphits based on recovered gap Moreau - MAC scraps - Batch 1 COntrol Control of high-guiling gaphits based on recovered gap Moreau - MAC scraps - Batch 1 COTTIC 2.4 rest required of dathoot mass from 3.5 - UPD SAFT - FCA modules UPF - Batch 1 CCA 100g Q1 2003 UP Active material NMC active material P COTTIC 2.4 rest regrade and on Co, Mi, Mis alts produced in WC - Easch 1 and the add grade in the cole of the co	3.5.3 Proof of concept and testing and on BM coming from EoL LFP	SAFT - EoL modules LFP - Batch 1				purified black mass		
Litred test of matrials from year with based on recovered grap Morrow - NMC scraps - Batch 1 Orano attest dig. up to 20 30g Q1 2024 Synthetized graphite 1 to 201g CDETEC 2.1 Testing on the purified black mass from 3.5 - cut Point discovered grap Morrow - NMC scraps - Batch 1 CA 100g C3 2023 NMC active material Lig to 1g CDETEC 2.1 Testing on the purified black mass from 3.5 - cut Point discovered grap SAFT - EXE modules IVP - Batch 1 Orano 4.g CDETEC 2.000 CDETEC 0.000 (G_MOGOG MOGOG MOGO	3.5.4 Scale-up and testing on the black mass produced from NMC 3.5.5 Scale-up and testing on the black mass produced from extrac				Q2 2023	purified black mass		JM Fraunhofer
Litred test of matrials from year with based on recovered grap Morrow - NMC scraps - Batch 1 Orano attest dig. up to 20 30g Q1 2024 Synthetized graphite 1 to 201g CDETEC 2.1 Testing on the purified black mass from 3.5 - cut Point discovered grap Morrow - NMC scraps - Batch 1 CA 100g C3 2023 NMC active material Lig to 1g CDETEC 2.1 Testing on the purified black mass from 3.5 - cut Point discovered grap SAFT - EXE modules IVP - Batch 1 Orano 4.g CDETEC 2.000 CDETEC 0.000 (G_MOGOG MOGOG MOGO								
1.1 Production of high-quality graphite based on recovered grap	WP4 DIRECT RECYCLING AND ACTIVE MATERIAL SYNTHESIS							
1.1 Testing on the purified blak mass from 3.5 - cathodies MMC starts = start b (CA and Defined in the purified blak mass from 3.5 - tar b (C	4.1 Direct recycling of materials from scraps							
$ \begin{array}{ c c c c c } 2.1 \mbox{Test} (a) the purified black mass from 35 - to Test Modules NMC - Batch 1 CA 0 and 0 (3 2023 UP Active material Log to 120 CPTEC 2 2.2 \mbox{Test} (b) the purified black mass from 35 - to Test Modules NMC - Batch 1 CA 0 (CA 0 CA 0 CA 0 CA 0 CA 0 CA 0 CA $	4.1.2 Testing on the purified black mass from 3.5 - cathode scraps	Morrow - NMC scraps - Batch 1						
3.ctv ematerial synthesis of NMC exits/1 Auto attest 48, up to 20.30g 0.42027 (12.024) synthesiz graphite 10.108 COURTS 3.1 Production of high-quality graphite based on recovered grap 0/- 60. Modules NMC- Ratch 1 Auto Lab scale: 0.42027 (12.024) synthesiz graphite 10.108 CDETE 3.1 Production of high-quality graphite based on recovered grap 0/- 60. Modules NMC- Ratch 1 Auto Lab scale: 0.000 (0.000 (0.000.04PC) 0.000 (0.000 (0.000.04PC) 0.000 (0.000 (0.000.04PC) 0.000 (0.000 (0.000.04PC) NMC active material Professional Professional </td <td>4.2.1 Testing on the purified black mass from 3.5 - EoL modules NR</td> <td>GV - EoL Modules NMC - Batch 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4.2.1 Testing on the purified black mass from 3.5 - EoL modules NR	GV - EoL Modules NMC - Batch 1						
Chaimers Lb scale: Chaimers Chai	4.3 active materials synthesis from HM outputs							
Alspecting processes sulfation Over Fail Modules NMC - Batch 1 and Morrow NMC scraps Metso Metso Addition Metso Addition Metso Addition CDFTEC 3.1 Synthesis of NMC material based on the purified leachate so Morrow NMC scraps	4.5.1 Production of high-quality graphite based on recovered grap in the second second second second second second second second second second second second second second second second sec	GV - EOL MODUles NMC - Batch 1		Lab scale : 0.870 kg, NISO4.6H2O 0.090 kg MnSO4.H2O 0.140 kg CoSO4.7H2O.	Q2/Q3 2023 : for lab scale			
A1 synthetic des graphite from straps 14.1 Morrow - MMC straps - Batch 1 Vinode 10.00 A.3.2 pouch cells Image: Control of the straps 14.1 A LNM cketter material from EQL batteries T4.2 GV - EQL Modules NMC - Batch 1 Faundofer > 1 4.3.2 pouch cells Image: Control of the straps 14.1 Morrow - MMC straps - Batch 1 All P active material from EQL batteries T4.2 GV - EQL Modules NMC - Batch 1 Add > 1 4.3.2 pouch cells Image: Control of the straps 14.1 Add P active material from EQL batteries T4.2 GV - EQL Modules NMC - Batch 1 Add P 10.00 4.3.2 pouch cells Image: Control of the straps 14.1 Add P active material from HX T4.3 GV - EQL Modules NMC - Batch 1 and Straps 14.1 Add P active material from HX T4.3 Gualmers Image: Control of the straps 14.1 Gualmers Image: Control of the straps 14.1 Gualmers Image: Control of the straps 14.1 Image: Control of the straps 14.1 Gualmers Image: Control of the straps 14.1 Image: Control of the straps 14.1 <td></td> <td>GV - EoL Modules NMC - Batch 1 and</td> <td></td> <td>34 Kg NISO4.6H2O 2,8 Kg MnSO4.H2O</td> <td></td> <td></td> <td></td> <td></td>		GV - EoL Modules NMC - Batch 1 and		34 Kg NISO4.6H2O 2,8 Kg MnSO4.H2O				
A12 NMC active material from tropp TA1 Morrow - NMC strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M > 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M 1 A32 pouch ells Image: Constraint of the strapp - Stach 1 M Image: Constraint of the strapp - Stach 1 M Image: Constraint of the strapp - Stach 1 M Image: Constraint of the strapp - Stach 1 M Image: Constraint of the strapp - Stach 1 M Image: Constraint of the strapp - Stach 1 M M M <th< td=""><td>4.3.2 Synthesis of NMC 811 based on Co., NJ, Mn saits produced in N</td><td>Morrow NMC scraps GV - EoL Modules NMC - Batch 1 and</td><td>Metso</td><td>34 Kg NISO4.6H2O 2,8 Kg MnSO4.H2O 4,6 Kg CoSO4.7H2O.</td><td>development (several samples of at least 10L are possible) Q2/Q3 2024 : 250L for pilot</td><td>NMC active material</td><td></td><td>CIDETEC</td></th<>	4.3.2 Synthesis of NMC 811 based on Co., NJ, Mn saits produced in N	Morrow NMC scraps GV - EoL Modules NMC - Batch 1 and	Metso	34 Kg NISO4.6H2O 2,8 Kg MnSO4.H2O 4,6 Kg CoSO4.7H2O.	development (several samples of at least 10L are possible) Q2/Q3 2024 : 250L for pilot	NMC active material		CIDETEC
4.41% adve material from t0L batteries TA2 5A7 - Ext modules LP - Batch 1 M 1 A.32 pouch cells Image: Control of the cont	4.3.3 Synthesis of NMC material based on the purified leachate so 4.4.8 Recycling processes validation	Morrow NMC scraps GV - EoL Modules NMC - Batch 1 and Morrow NMC scraps		34 Kg NISOA 64/20 2,8 Kg MISOA 14/20 4,6 Kg Co504.7/20. 300L	development (several samples of at least 10L are possible) Q2/Q3 2024 : 250L for pilot development and production		25 pouch cells	CIDETEC
OV Output	4.3.3 Synthesis of NMC material based on the purified leachate so 4.4 Recycling processes wildation 4.4.1 synthetized graphite from scraps 74.1 4.2.4 XWM cattle material from scraps 74.1	Morrow NMC scraps GV - EoL Modules NMC - Batch 1 and Morrow NMC scraps Morrow - NMC scraps - Batch 1 Morrow - NMC scraps - Batch 1	Vianode JM	34 Kg NISO4 6H2O 2.8 Kg MISO4 H2O 4,6 Kg CoSO4.7H2O. 3000. 10,00 >1	development (several samples of at least 10L are possible) Q2(93 2024 - 250L for pilot development and production 4.3.2 4.3.2	pouch cells pouch cells	25 pouch cells	CIDETEC
4.5 MMC active material from HMT4.3 Morrow NMC srops >1 4.3.2 pouch cells 4.7 MMC active material from HMT4.3 GV - EoL Modules NMC- Statch 1 and Metso Metso <	4.3.3 Synthesis of NMC material based on the purified leachate so 4.4 Recycling processes validation 4.4.1 synthetized graphite from scraps T4.1 4.4.3 VMC active material from CR0.b threfies T4.2 4.4.4 VMC active material from CR0.b batteries T4.2	Morrow NMC scraps GV - Eol Modules NMC - Batch 1 and Morrow NMC scraps Morrow - NMC scraps - Batch 1 Morrow - NMC scraps - Batch 1 GV - Eol Modules NMC - Batch 1 SATT - Eol Modules VMP - Batch 1	Vianode JM Fraunhofer JM	34 Kg NISO4 6H00 2.8 Kg MISO4 H00 4,6 Kg CoSO4 7H20. 3000. >1 >1 >1 >1 >1	development (several samples of at least 10L are possible) 02/03 2024 : 250L for pilot development and production 4.3.2 4.3.2 4.3.2 4.3.2	pouch cells pouch cells pouch cells pouch cells	25 pouch cells	CIDETEC
4.7 NMC active material from HM T4.3 Morrow NMC scraps >1 4.3.2 pouch cells	4.3.3 Synthesis of NMC material based on the purified leachate so 4.4 Recycling processes validation 4.4.1 ymhetized graphite from scraps T4.1 4.4.3 VMC active material from GLO batteries T4.2 4.4.4 UFP active material from GLO batteries T4.2 4.4.4 UFP active material from GLO batteries T4.2 4.4.5 synthesized graphite from HM T4.3	Morrow NMC scraps GV - Eol Modules NMC - Batch 1 and Morrow NMC scraps Morrow - NMC scraps - Batch 1 Morrow - NMC scraps - Batch 1 GV - Eol Modules NMC - Batch 1 GV - Eol Modules NMC - Batch 1 and GV - Eol Modules NMC - Batch 1	Vianode JM Fraunhofer JM Aalto	34 Kg NISO4 6H00 2.8 Kg MISO4 H00 4,6 Kg CoSO4 7H20. 3000. >1 >1 >1 >1 >1	development (several samples of at least 10 are possible) 02/03 2024 : 250 for pilot development and production 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2	pouch cells pouch cells pouch cells pouch cells pouch cells	25 pouch cells	CIDETEC
A.8References materials (scraps?) Orano or CEA > 1 4.3.2 pouch cells	4.3.3 Synthesis of NMC material based on the purified leachate so 4.4 Recycling processes validation 4.4.1 ynthetized graphite from scraps T4.1 4.4.3 WMC active material from CIO batteries T4.2 4.4.4 UP active material from CIO batteries T4.2 4.4.4 UP active material from CIO batteries T4.2 4.4.5 synthetized graphite from HM T4.3 4.6 NMC active material from HM T4.3	Morrow NMC scraps GV - Eol Modules NMC - Batch 1 and Morrow NMC scraps - Batch 1 Morrow - NMC scraps - Batch 1 GV - Eol Modules NMC - Batch 1 Morrow NMC scraps	Vlanode JM Fraunhofer JM Aalto Chalmers	34 Kg NISO4 6H00 2.8 Kg MISO4 H00 4,6 Kg CoSO4 7H20. 3000. >1 >1 >1 >1 >1	development (sevend samples of at least 01are possible) 02(03)2024-259, for pilot development and production 43.2 43.2 43.2 43.2 43.2 43.2 43.2	pouch cells pouch cells pouch cells pouch cells pouch cells pouch cells	25 pouch cells	

 Table 8 : Source and destination of different materials required throughout the lifetime of the RESPECT project

6 BIBLIOGRAPHY

- [1] Battery Cell, Module or Pack. What's the difference? [Infographics] | Automotive Cells Company. https://www.acc-emotion.com/stories/battery-cell-module-or-pack-whatsdifference-infographics..
- [2] Harper, "Recycling lithium-ion batteries from electric vehicles," 2020. [Online]. Available: https://www.nature.com/articles/s41586-019-1682-5. [Accessed 23 February 2023].
- [3] B. SIMON, Table on battery packs, modules and cells specifications, 2022.
- [4] "Data for materials specification," [Online]. Available: https://www.youtube.com/watch?v=YU_qfD582Sk. [Accessed 23 February 2023].
- [5] "Data for materials specifications," [Online]. Available: https://www.renaultgroup.com/news-onair/actualites/z-e-50-les-secrets-de-la-batterie-denouvelle-zoe/. [Accessed 23 February 2023].
- [6] "Data for materials specifications," [Online]. Available: https://www.youtube.com/watch?v=E0v0jZNiO5g. [Accessed 23 February 2023].
- [7] "Data for materials specifications," [Online]. Available: https://www.guideautoweb.com/constructeurs/renault/twizy/2017/specifications/40/.
 [Accessed 23 February 2023].
- [8] "Data for materials specifications," [Online]. Available: https://kitoffgrid.com/fr/427-packbaterie-acumulator-li-ion-lg-chem-renault-twizy-14s-61-kwh.html.
- [9] "Data for materials specifications," [Online]. Available: https://media.adtorqueedge.com/new-cars/renault-au/kangoo-ze/specifications.pdf.
- [10] «Data for materials specifications,» [En ligne]. Available: https://www.youtube.com/watch?v=0dBjPwJ_Qaw. [Accès le 23 February 2023].
- [11] "Data for materials specifications," [Online]. Available: https://www.greenvision.fr/batteries-lithium-ion/305-cellules-lithium-ion-nissan-aesc-60ah.html. [Accessed 23 february 2023].
- [12] SMEKENS, "Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results," [Online]. Available: https://www.researchgate.net/publication/294275605_Influence_of_Electrode_Density_on _the_Performance_of_Li-Ion_Batteries_Experimental_and_Simulation_Results. [Accessed 23 February 2023].
- [13] AVICENNE, "The rechargeable battery market and main trends 2020 2030 threats, challenges and opportunities," 2022. [Online]. Available: https://avicenne.com/reports_energy.php#rapport2. [Accessed 23 February 2023].

CO/CL/PU

- [14] W. Mackenzie, "Global Cathode and Precursor Market 2021 Outlook to 2050," DECEMBER 2021.
- [15] IDTECHEX, "Li-ion Battery Recycling Market 2022-2042," [Online]. Available: https://www.idtechex.com/en/research-report/li-ion-battery-recycling-market-2022-2042/848. [Accessed 23 February 2023].
- [16] IEA, "Global EV Outlook 2022," [Online]. Available: https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf. [Accessed 23 February 2023].
- [17] BLOOMBERG, "Battery scrap available for recycling in Europe in 2021, with a forecast until 2030(in 1,000 metric tons)," STATISTA, 2022. [Online]. Available: https://www.statista.com/statistics/1333918/europe-battery-scrap-availablerecycling/#:~:text=Published%20by%20Ian%20Tiseo%2C%20Feb%206%2C%202023%20In,d ecade%2C%20to%20surpass%20260%20thousand%20tons%20by%202030.. [Accessed 23 February 2023].
- [18] R. BERGER, "The Lithium-Ion (EV) battery market and supply chain," 2022. [Online]. Available: https://content.rolandberger.com/hubfs/07_presse/Roland%20Berger_The%20Lithium-Ion%20Battery%20Market%20and%20Supply%20Chain_2022_final.pdf. [Accessed 23 February 2023].
- [19] DRIANCOURT, Table on RESPECT project materials, 2022.
- [20] ORANO and AALTO, "RESPECT D3.1 "List of requirements/chemistries to be investigated based on future waste streams"," 2022.
- [21] "In-Production Recycling of Active Materials from Lithium-Ion Battery Scraps," 2015.
 [Online]. Available: https://www.researchgate.net/publication/275823634_In Production_Recycling_of_Active_Materials_from_Lithium-Ion_Battery_Scraps. [Accessed 23 February 2023].

7 FIGURES

Figure 1 : Examples of three different battery packs and modules (cylindrical, prismatic and pouch	I .
cells) in use in current electric cars [2]	6
Figure 2 : Manufacturing steps of Li-ion batteries [12]	7
Figure 3 : Cell type by major regions % of GWh produced 2021-2030 [13]	9
Figure 4 : Global forecast of available batteries - by chemistry - in tonnes up to 2040	.10
Figure 5 : Forecasted level of Li batteries for recycling in Europe 2040	.11
Figure 6 : Forecasted level of End of Life for recycling globally by 2030 [13]	.11
Figure 7: Forecasted level of scraps for recycling globally by 2030 [13]	.12
Figure 8 : Battery scrap available for recycling in Europe in 2021, with a forecast until 2030 [17]	.13
Figure 9 : Predicted total available LiB material for recycling globally by 2030 [18]	.13

8 TABLES

Table 1 : Overview of the key characteristic from a sample of modules currently available on the	
market	7
Table 2 : Main type of scrap materials generated during the manufacturing process	8
Table 3: Predicted changes in different cathode chemistries production from 2015 to 2030 [14]	9
Table 4 : Proportion of forecasted scrap	. 11
Table 5 : Starting material sources and proposed quantities	1
Table 6 : Specification of scrap to be treated via the RESPECT project	2
Table 7 : Catalogue of modules considered [3]	1
Table 8 : Source and destination of different materials required throughout the lifetime of the	
RESPECT project	2